預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
點擊領取_2020年高三二模各區(qū)試題&答案&解析&位置換算資料匯總
2020北京平谷區(qū)高三年級第二學期數(shù)學期末試題及答案!二模診斷結束后,大家一定非常關心自己診斷的成績,但其實模擬診斷更重要的作用是了解自己復習的成果以及排查找到自己在復習時遺漏的部分,通過盡快補上這部分的知識點,再通過做題掌握它。下面是小編今天給大家?guī)淼?/span>2020北京平谷區(qū)高三年級第二學期數(shù)學期末試題及答案!希望可以給各位同學帶來幫助,加油!
另外學而思愛智康的老師準備了
2020年高三二模各區(qū)試題&答案&解析&位置換算資料匯總
助你效率翻倍!取得優(yōu)異成績!
點擊鏈接☞https://jinshuju.net/f/iDdRhl或下方圖片即可領!
高中數(shù)學解答題通用答題套路
三角變換與三角函數(shù)的性質問題
、俳忸}路線圖
不同角化同角。
降冪擴角。
化f(x)=Asin(ωx+φ)+h。
結合性質求解。
、跇嫿ù痤}模板
化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質,寫出結果。
反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規(guī)范性。
解三角函數(shù)問題
①解題路線圖
化簡變形;用余弦定理轉化為邊的關系;變形證明。
用余弦定理表示角;用基本不等式求范圍;確定角的取值范圍。
、跇嫿ù痤}模板
定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
定工具:即根據(jù)條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
求結果。
再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
同時,也向您推薦學而思愛智康1對1在線直播課程
點擊鏈接☞https://jinshuju.net/f/vWdPTS或下方圖片即可預約!
以上就是小編特意為大家整理的2020北京平谷區(qū)高三年級第二學期數(shù)學期末試題及答案相關內容,同學們二模診斷結束了,大家在學習的過程中如有疑問或者想要獲取更多資料,歡迎撥打學而思愛智康免費電話: 更有專業(yè)的老師為大家解答相關問題!
相關推薦: